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Critical-state model for harmonic generation in a superconducting microwave resonator
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A critical-state model is developed for the treatment of the nonlinear ac response of a superconducting
coaxial-type transmission line. Analytical results are presented for the resistance and reactance as well as the
response at overtone frequencies. Center conductors of both elliptical and rectangular thin-film cross section
are considered. The dominant response, in the case of the elliptical geometry, is found to be independent of the
aspect ratio of the ellipse. Significant differences are found between the elliptical and strip geometries. These
differences are due to the difference in structure of the critical state in the two geometries. The model is applied
to resonators with the assumption that end effects can be neglected. Qualitative agreement is found with
experimental result$S0163-18207)01317-9

I. INTRODUCTION as the power increases. Experimental evidence suggests that
the nonlinearity is associated with the onset of vortex pen-
There is presently considerable interest in the use of highetration and hysterests. Previous modeling of the data has
temperature superconductdisTS's) in passive microwave assumed a coupled-grain model at low input pot&his
devices such as filters for wireless communicatichMany =~ model was successful in fitting the behavior of both the re-
people believe that this will be one of the first widespreadsistive and reactive responses of the surface impedance. At
applications for HTS'S. Recent prototypes of HTS filters higher input powers a modified Bean model was empldyed.
have shown performance superior to convential filters by af his model was able to quantitatively explain the power de-
least an order of magnitudé€:* This improvement is due to pendence of the surface resistance. Sridhar proposed a
the lower losses in HTS as compared with conventional mecritical-state model for the resistance and reactdrtlus
tallic conductors such as copper. Lower conductor loss in &r, satisfactory models to explain HG and IM in either the
resonator translates into a larg@rand, therefore, a smaller low-power or high-power regions have been lacking.
bandwidth. High® resonators also provide a convenient The purpose of this paper is to provide a model, similar to
method for studying fundamental properties of HTS's. In theSridhar’s, for describing the power dependence of the sur-
Meissner state the reactive part of the surface impedence face impedence and HG due to quasistatic vortex penetration
proportional to the penetration depth. Therefore, the temand hysteresis. We will employ a field-independent critical-
perature and field dependence of the surface impedence caffte model with the assumption tiég; =0 (Bean model®
yield information about the lower critical field; and about ~ This should be an excellent approximation when the average
the symmetry of the order parameteigh-Q resonators are Self-field is greater thah ;. We will also neglect any effects
also a convenient way of studying vortex dynamics and highdue to surface barriefsA model describing two-frequency
dissipation regimes because large transport currents can B Will be presented in a separate paper.
created even at modest input power.
One aspect of HTS’s that distinguishes them from con- Il. THE MODEL
ventional conductors, and complicates device design, is their
nonlinearity, which manifests itself in a dependence of the We consider a one-dimensional coaxial-type transmission
surface impedance on the input power or transport currerine. The outer conductor is a superconducting cylindrical
amplitude>® One consequence of the power dependance ishell of radiusR. The inner conductor is either a supercon-
that the low-power surface impedance is no longer a suffiducting wire of elliptical cross section with semimajor axis
cient figure of merit for the material. Instead, the surfacea and semiminor axi®, or a superconducting thin-film strip
impedance must be determined at the specific power af width 2W and thicknessl (see Fig. 1 The center con-
which the device will be operatédNonlinearities also lead ductor carries a transport currehi(t) =1y cos(wot). We
to harmonic generatiofHG) and two-frequency intermodu- assume that for the elliptical geome#ty<a, and that for the
lation (IM). The occurrence of IM in filters can cause variousstrip geometry eithex <d<W or d<A <A <W, where\ is
problems such as the generation of spurious targets in radéite London penetration depth ant=2\?/d is the two-
receivers. A thorough understanding of all these effects isdimensional screening lengthWe will also assume tha
essential before high-quality devices can be successfully dés large enough that the center conductor can be treated as if
signed and constructed. While these effects are present evénwere isolated. It can be shown that this is not a very re-
at small input powers, they become much more pronouncestrictive assumptioh 3 These assumptions allow us to use
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The voltage drop per unit lengtti(t) is given by Fara-
outer conductor day’s law

center conductor

, @

R
f dxB,(x,t)
0

d
V(t)=—
Elliptical geometry (t) dt

whereB, is thez component of the flux density in they
plane. Sincd(t) is periodic with periodl =27/ wq, V(t) is
periodic with the same period. We may, therefore, express

\Z V(t) as a Fourier series
X o]

V<t>=|mn§l [R, cognwet) — X, sin(nwgt)],  (2)

where the coefficientR,, and X,, are given by

Strip geometry

wqo T
R,= jdtV(t) cognwgt) 3
mlrolo
and
—wo (T .
Xn= fdtV(t) sin(Nwgt), (4
7o Jo

FIG. 1. A sketch of the two geometries considered in this paper.
The outer conductor is a cylindrical shell of radiRs The center  respectively. The dissipated power per unit length is given
conductor is either an elliptical wire with aspect ratie-a/b or a by
thin-film strip of width 2W and thicknessd, where a<R and
W<R. They axis points into the page. 1T
Pdiss:ffo dtlr(H)V(t). 5
the well-known results for infinitely long, isolated elliptical
wires and stripd#-16 Inserting Eq.(2) into Eq. (5) yields
When I becomes large enough, vortices will start to
penetrate into the center conductor from its surface. In our 1,
calculations we assume thkk;;=0 and that there are no IDdiss:i'TORl' (6)
surface barriers, so vortex penetration occurs fot-gf0.
For simplicitly we will neglect any vortex penetration in the Equation(6) implies thatR, is the resistance per unit length.
outer conductor. We assume thaj is small enough that we X; is the reactance per unit length which is related to the
can treat the vortex motion quasistatically. This will be doneinductance and to the resonant frequency. Whegp-0,
using a critical-state model with field-independdpt4-16 V(t) becomes purely inductive; therefor¥;— X, where
There are significant differences between the critical state, is the geometric reactance per unit length. Rorl, R,
in an elliptical wire and that in a strip. As shown in Ref. 14, and X,, yield information on the generation of higher har-
in an elliptical wire(see Fig. 2 the flux fronts are concentric monics in the transmission line.
ellipses(they all have the same aspect ratie-b/a). When

the transport current is_ decrea;ed from its .peak vahég 1. RESULTS
there will be three distinct regions in the wire. There is a o
central region|x|<a, which is both flux and current free. A. Elliptical geometry

The size of this region depends on the ratio of the peak e will first consider the case where the center conductor
current o to the saturation current.=maa®J.. The has an elliptical cross section. The expressionsafgra,,
middle regionay<|x|<a, contains frozen-in flux from the andB, can be derived from the results of NortfsThe ex-
previous front. The current density in this region is pressions folm, anda, are

Jy(x)=+J;. The outer regiom;<|x|<a is occupied by

the new front, and the current densityJigx) = —J.. Thus, ag=ay1—F @)

the critical state in an elliptical wire is similar to that in a

circular wire!* In the case of a strigsee Fig. 3 there isa and

central regior{x| <ay, which is shielded from magnetic flux

but contains a screening-current density. The middle regions _javl-F Sif(wet/2), 0<t<T/2, g
ap<|x|<a; contain frozen-in flux from the previous front. ay(t)= aV1—F co(wotl2), TI2<t<T, ®

The current density in these regions is not equat-tf. but

rather is a function of position. The outer regionswhereF=I,/l.. The expressions foB, are given in Ap-
a,<|x|<W are occupied by the new front. The current den-pendix A. If the expressions fdB, are used in Eq(1) the
sity in these regions ig,(x) = —J..*>*° result is
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FIG. 2. The critical state for an elliptical wire
upon decreasing the transport current from the
peak value I+,. There is a central region
1.0 - S— R . 0<x<ay in which both the current density and
w ‘ w w ' flux density vanish. There is a middle region
h ap<x<a, carrying a current density
Elliptical geometry Jy(X)=+J; and an outer regioa; <x<a carry-
ing a current densityd,(x)=—J.. There is a
nonzero flux density in both the middle and outer
regions. In the case showna,=0.5a and

a1=0.7$.
0.6 - b
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x/a
Howo . R+ VR?—(1—a?)a,(t)? g ol 2
V(t)=—l1o—— sin(wqt) In T a)avD) Paiss=5 WC[F(l—F/2)+(1—F)In(l—F)]. (12)

Using Eq.(4) to calculateX; we obtain
The logarithm can be expanded around laRy® obtain

X1:X0+AX1, (13)
Ho%o R 2(1) whereAX; is gi
= —— — _ 1 IS given by
(ay(1))\? AX _Mowo[_Lr2\/1—F(2—F—2\/1—F)
R ) H (10 Y4m | 2 F2
_ _ _ 2-F+2y1-F
The first and largest term is the voltage drop per unit length —In — (14
in the absence of vortex penetratioh{—0). The second
term is the dominant term arising from the quasistatic vorte
penetration. It is interesting to note that this term is indepen-
dent of«. The third term leads to small corrections and will o > R
be neglected. x.— oo, =) 15
i - o 2 1+ (15
Using Egs.(3) to calculateR,, we find 7 \(ltae)a

L AX, is the power-dependent or nonlinear part of the reac-
_ Ho%o . _ _ tance, whileX, is the geometric reactance.
Ry 2 WFZ[F(Z F)+2(1=F)In(1-F)]. 1Y The coefficients for all higher harmonics can be calcu-
lated analytically. For the even harmonics it is found that
Inserting Eq.(11) into Eq. (6), we obtain Norris’ result for
the losses in an elliptical wité Ron=Xn=0. (16)
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- FIG. 3. The critical state in a thin-film strip
upon decreasing the transport current from the
peak valud o. There is a central regiox| <a,
where the flux density vanishes but not the cur-
rent density. There is a middle region in which

1.5 -

Strip geometry

4 the current density is not equal toJ. but rather

is a function of positionthe expression is given
in Appendix A), and there is an outer region
where the current density i&,(x)=—J;. There

is a nonzero flux density in both the middle and
] outer regions. In the case showay=0.5a and
a;=0.7=.
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The expressions fdR; andX; are given in Appendix B. The

expressions for the higher harmonic coefficients are lengthy

and have, therefore, been omitted.
For F<1, the leading-order behaviors &, AXq, Rs,
and X5 are given by

_ MoWo F
" 27w 37’ a7
Mowo F
AXp=7— 5> (18)
_ Mowo F
Re= 21 ( 577)’ (19
MoWo F2
X3= e (20

B. Strip geometry

We next consider the case where the center conductor is a

thin-film strip. The expressions fa&, anda, are
ag=Wy1—F?,

(21)

and

1.0 1.5

W11—F? sirf(wt/2),
W1/1—F? cod(wgt/2),

0<t<T/2,
T/2<t<T.

al(t):|

The expressions foB, (Refs. 15 and 1pare given in Ap-
pendix A. If the expressions fd8, are used in Eq(l), the
result is

_ Mo®o R+ VR —ay(t)
V(t)= _ITOW sin(wgt) In T . (23
The logarithm can be expanded around laRy& obtain
. Mo®Wo 2R ay(t)
V(t)= ITO? sm(wot)[ —In W) + In W
a(t))\2
o[ lF(e ) ] (24)

The third term is a small correction and will be neglected.
The expressions fdR; andX; are found to be

Mowo 2
Rl:? W_Fz[(1+ F) In(1+ F)

+(1-F) In(1-F)—F?], (25)

which yields Norris’ result for the losses in a thin-film stftp
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T 80 - 7 R FIG. 4. Response of a resonator, with either
@ -~ an elliptical (a) or strip (b) center conductor, at
; , | g frequencieswy and 3wy. The parameter values
2 40 + used wereZy,=50 Q, fo=wy/27=1.6 GHz,
a ) /=3 cm,Wora=75um,d or 2b=0.3 um, and
(b) Strip geometry J.=10° Alcm?. It was assumed that the dielectric
0 /// | constant characterizing the region between the
7 conductors iss=10.
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wo Mol¢ 2 mowo F
P gis< Yy [(1+F) In(1+F)+(1—-F) In(1-F)—F<] 1= 3 (31
(26)
5F2
and Y
=T 1) (32
X1:XO+ AXl, (27)
is i powo[ F?
whereAX; is given by Rs= - =1, (33
2 S5
Mowo( 2[4—(2—F)Jy1—-F—(2+F)J1+F] ,
AX1= - l+ 2 MoWqo F
27 32
L (2—F+2J1-F)(2+F+2\{1+F) } 28
n 1
16 IV. COMPARISON WITH EXPERIMENT
and Resonators have a finite length. Therefore, if we want to
apply our results to a resonator, we must assume that the
X _ Moo In(ﬁ) (29) fringing effects due to the ends of the resonator can be ne-
o 27 W/ glected, and our expressions foi(t), R,, X,, and P

The coefficients for the higher harmonics can be calculate

analytically. The even harmonics vanish:

Rzn:XZnZO . (30)

The expressions fdR; and X5 are given in Appendix B.
The leading-order behaviors fér<1 are

ust be multiplied by the resonator length to make them
imensionally correct. It can be shown that for a resonator of
length/, X, is related to the characteristic impedengeby
/Xo=mZy. In a typical experiment a current with amplitude
I 1o is established in the center conductor. The output voltage
signal is analyzed to determine the distribution of power
among the various frequencies inside the resonator. The
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amount of output power at a given frequency can then be TABLE I. Comparison of the theoretical and experimental re-
plotted versus the input power to determine the degree ofults for A TOI as the width, length, and temperature are varied
nonlinearity in the resonator. The expression for the timeindependently. The experimental values were taken from Ref. 20.
averaged available incident power,. in terms of the peak The values fpr the criticgl current density at a given temperature
currentl 1o is Pincz(1/2)|$o/xo- The relation between the Were determined by taking the average of all accurately reported
time-averaged output poweP,, and P,. is given by Vvalues atthat temperature.

Pou= rﬁPmc, wherer , is the voltage insertion ratio. In terms
of S parameters;, =|S,,|. The insertion los§lL ) is given by
IL=—20logy, dB. In HG measurements a well-matched

Parameter A TOI (dBm)
Experiment Theory

transmission-line sample is usé@herefore, the IL is prima-  Width (W — 2 W) 6.2 6.0
rily determined byP 4 and not by coupling loss. Therefore, (W — 4 W) 12.2 12.0
the time-averaged input powe¥, is given byP;,=Pj,., and (W — 8 W) 18.4 18.1

Pout is given by P, = Pi,— Pgiss- The output power is dis-

tributed among the various harmonics. The power spectrurh®ngth(14 mm— 1 mm 9.7 115
at frequencynwy is proportional toR2+ X2 . The amount of (14 mm— 5 mm) 31 4.5
output power at frequenayw, [ Pou{Nwo)] is given by the (5mm— 1 mm 6.5 7.0
product of the time-averaged output power and the fraction—emperature(loo K — 90 K) 156 123
of power stored at that frequency, (90 K — 80 K) 5.4 3.1

(80 K — 70 K) 5.5 5.8

R2+ X2
= 4RO +X5)

Poul Nwg) = PoyeX

) . (35

) The ratior = (Awg/wg)/A(1/2Q) has been stressed as an
Figure 4 shows plots oP o, (wo) and Pqu(3wo) VersusPin  important figure of merit characterizing the nonlinearity in
for both the elliptical and strip geometries. The slope of theagonatoré:1’-1° This quantity can be determined experi-
Poufwo) versusPy, curve is equal to one for both geom- mentally from the resonance curdew, is the shift in posi-
etries. The slope of the o (3wo) versusPi, curve is equal  on of the peak of the curve, ar@ is the reciprocal of the
to two in the elliptical geometry and equal to three in thepangwidth. This ratio is also related to the theoretical quan-
strip geometry. It can be shown that the third-order intercepfjsies R, andAX,. The change in the bandwidth(1/Q) is

(TOI) for the elliptical geometry is given by given by
1 Sarl 2
Ton_—|__~“"c 3 ! Ry
Pin =3 ( ,uo(wO/ZTr)/) (7Zo)" (39 A(a) Xy (%9
For the strip geometry the TOI is given by and the relative shift in resonant frequenki,/ v, is given
b
P-(TOI)Z (WI CZO)Z/[IU’O( (1)0/277)/] (37) g
" 2JBmE+(1B2? Awg 14X (39)

Using the parameter choiceZy=50Q, fy=w/27
=1.6GHz,/=3 cm,Wora=75um,d or 20=0.3 um,  Suybstituting these expressions into the expression rfor
and J,=10°A/cm?  the TOI, defined as yields
10 logy P{T°"/mW] dBm, is equal to+72.2 dBm for the
elliptical geometry and+57.7 dBm for the strip geometry. AX,

The values of the TOI calculated from E(7) are in r= Ry (40)
reasonable agreement with experimental values for coplanar
TBCCO lines given in Table Il of Ref. 20, although the Therefore,r provides a simple way to compare experiment
ground plane and dielectric geometries are different. A betteand theory.
way to compare our theory to experiment, however, is to In Nb microstrip resonators, the quantitywas found to
examine how the TOI depends on line width, line length, anche essentially constant{1) except at temperatures close to
temperature, as was done in Table Ill of Ref. 20. AccordingT,.® In this case a plot oA wy/wg versusA(1/2Q) should
to Eq.(37), the change in the TOI when only the width of the be a straight line with slope of order unity at smaller values
line is changed from W; to 2W, is of F, and should deviate from a straight line at lardger
A TOI=20 log;o(W,/W;). When only the length of the line values. Figure 5 shows such a plot using our expressions for
changes fromy’; to /,, the corresponding TOI difference is R; andAX;.
A TOI=10log(/1//5), and when only the temperature is A frequency-independent value of order unity is char-
changed fromT; to T,, then A TOI=20logdJ.(T,)/  acteristic of the nonlinearity caused by vortex pinning and
Jo(T1)]. Table | shows a comparison of experimefftaind  hysteresis. For other mechanisms the magnitude and fre-
theoretical values foA TOIl. Excellent agreement between quency dependence of the value may be quite
theory and experiment is found with regard to the widthdifferent!®1%2! For the case of the low-field behavior of
dependence, and fair agreement is found with the dependemweak links, ther value is often one or two orders of magni-
cies on length and temperature. tude larger and is inversely proportional to the
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FIG. 5. Plot of Awg/wqy vs A(1/2Q) for a
resonator with an elliptical or strip center conduc-
tor. The curves end &= 1. The initial slopes of
the lines, corresponding t©6<1, are 2.4 and 1.5
0.030 | Strip geometry for the ellipse and strip, respectively. This
straight-line behavior is observed experimentally.
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frequency*®192! This has been observed in granular andtor for Energy Research, Office of Basic Energy Sciences.
polycrystalline samples in small fields. The work at M.1.T. was supported by the Air Force Office of
Scientific Research, and by DARPA.

V. SUMMARY
APPENDIX A: FLUX DENSITY AND CURRENT DENSITY
We have presented a critical-state model for the nonlinear EXPRESSIONS

ac response of a superconducting coaxial-type transmission .

line. This model can be applied to superconducting micro- The expressions fody(x) and B,, for the case of an
wave resonators if fringing effects due to the resonator endglliptical geometry, are

are neglected. Center conductors of both elliptical and thin-

film cross section were treated. For the elliptical geometry 0, O<x<ao,

the results were found to be independent of the aspect ratio Jy(x)= +Je, ap<x<ay, (A1)
of the ellipse. For small currents the impedance in the ellip- —J
tical geometry was found to be proportional to the current ¢
amplitude, while in the strip geometry it was found to beand

proportional to the square of the current amplitude. Analyti-

a,<x<a,

cal formulas were derived for the input power at the third- (0, 0<x<ay,
order intercept for harmonic generation. These results should x/a
be relevant to experiments dealing with the design and test- Be(lT_f(aO) ,  ap<x<ay,
ing of superconducting microwave resonators and filters. B,(x)= @
x/a
—Be 2f(a1)—f(a0)—1— , a;<x<a,
ACKNOWLEDGMENTS ta
| —Be(2f(a;)—f(a)—f(ap)), a<x<R,

Ames Laboratory is operated for the U.S. Department of
Energy by lowa State University under Contract No.
W-7405-Eng-82. This research was supported by the Direowhere the functiorf is given by
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f(u) (ua)” (A3)
u)y= ;
xla+(x/a)?>—(1—a?)(ula)?
and the scaling field, is defined as
Be: MoaJCa. (A4)
For the case of the strip geometry the expressions are
2J, - W2—aj - W2—a? 0
— — <x<
7| B Vo | 2 | Ngme || 0<%<a.
Jy(x)= B W2—a? (A5)
- — <X<
c p an 22 ||’ Qp<X<ai,
—Je, A <x<W,
and
(O y 0<x< ag,
. W2 )
—bsin ,  Qp<<x<a,,
B,(X)={ VW2 —ag—\x*~aj (A6)
B In( W ) 2 In( X~ W ) a<x<R
p— f - y ’
\ [\x2—ag— WP —aj =22 — W=
I
where the scaling fiel®; is defined by powo 1, 5 5
X3—? W[F + 16F°— 144F <+ 256F
L —128+64(2—F)J(1-F)°]. (B2)
For the case of strip geometry the expressions are
APPENDIX B: COEFFICIENTS FOR THIRD HARMONIC Lowo 1 4 ) )
= - + +F)+
RESPONSE Re=— — 3 pal2F"— 144"+ [481+F)+6F]
The expressions fdR; and X for the case of an elliptical X (14 F)In(1+F)+[481—F)+6F?2]
geometry are
X(1-F) In(1-F)], (B3)
_MOwO 1 _ 2 3 and
3= 377F4{48F 12F-+22F
xo=20%0 L e qamr_q0g
+F4+[48(1—F)+6F2](1—F) In(1—F)}, 3= %, aFdl
(BD) +32F2—3F+2)V1-F+322+F)J(1+F)3].
and (B4)
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